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Modeling the Quantum Mechanical Measurement 
Process 

A n t o n  A m a n n  1 

Received September 28, 1994 

The conceptual background of the quantum measurement problem is discussed 
with respect to an individual-stochastic interpretation of quantum mechanics in 
terms of pure states. The derivation of a stochastic dynamics on the pure state 
space of the "system to be measured" (starting from the joint system including 
an environment/measurement apparatus) is sketched. Finally the asymptotic 
behavior of such a derived stochastic dynamics is discussed: it is argued that 
usually one cannot expect a measurement-type asymptotic behavior. Hence 
measurement-type behavior can only arise during an intermediate period of time 
and the asymptotic behavior will be thermal. 

1. I N T R O D U C T I O N  

My intention in this paper is to discuss the quantum mechanical measure- 
ment process from a conceptual point of view. Mathematical formulas and 
technicalities will be omitted as far as possible. 

The most important conceptual point is a clear distinction between a 
statistical interpretation of quantum mechanics in terms of density operators 
(mixed states), on the one hand, and an individual-stochastic interpretation 
in terms of  pure states, on the other. I will stick to an individual interpretation 
and shall give some reasons for this choice (see Section 2). Unfortunately, 
such an individual interpretation of quantum mechanics has not been worked 
out: In particular, it remains open what sort of (stochastic) dynamics (on the 
space of pure states of the system in question) is physically reasonable. I am 
convinced that stochastic dynamical equations should be derived from a 
"bigger" system, comprising not only the system to be measured, but also 
its "environment" (e.g., the measurement apparatus). A discussion of that 
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point will be given in Section 3. The last conceptual problem discussed here 
(see Section 4) concerns the asymptotic (large-time) behavior of such a 
derived stochastic dynamics: May one expect a measurement-type or much 
more a thermodynamic behavior? 

2. STATISTICAL VERSUS INDIVIDUAL INTERPRETATIONS 

To start with, consider an ammonia-type molecule with a ground-state 
vector q~+ and a first-excited-state vector ~ _  (it is permitted to think of a 
Born-Oppenheimer double-minimum potential). These two state-vectors are 
eigenvectors of the Hamiltonian, hence stationary. The respective energy 
difference is called Ae. In case of ammonia, the transition between these two 
eigenstates corresponds to the ammonia maser transition. By superposition, 
one may also prepare nonstationary states with state-vectors 

1 
~L := 7-~ ( %  + r e ' )  

1 
xItR := - ~  (~+ -- xI*_) 

These states "tunnel" back and forth, i.e., xI* L evolves dynamically into XPR 
and back to ~IIL, the frequency being that of the maser transition. The states 
corresponding to XI*L and xI* R have a pyramidal nuclear structure (whereas 
~+ and ~ _  do not lead to a nuclear structure at all). Furthermore, xI* L is 
mapped into xI* R under space inversion and vice versa; hence they will be 
called left- and right-handed states, respectively (ammonia, NH3, cannot have 
chiral nuclear structures, but NHDT has). The four states mentioned (with 
state-vectors xI*+, xI*_, ~ttC, and ~R) can be experimentally prepared in the 
case of ammonia (Kukolich et al., 1973). That is far from being trivial: 
Consider "properly" chiral molecules, such as a sugar or an amino acid, 
which are of ammonia type, too. There the proper ground state seems not  to 
exist, or to be at least very unstable, decaying in a measurement-type process 
into the handed states (Amann, 1992; Hund, 1927; Pfeifer, 1980; Quack, 
1986, 1989). The main difference between ammonia and, say, alanine concerns 
the energy difference Ae, which is about 9.5 J mol- l for ammonia and around 
10 -6o J tool -1 for alanine (Pfeifer, 1980). 

Now a measurement of the energy in an ammonia-type molecule is 
expected to end with the eigenstates q?+ and ~ _  in case of ammonia, and 
with the handed states R* L and ~R in case of alanine. Though these are 
completely different final results, the density operators of the respective 
mixtures, namely �89 + D_) and �89 + DR) coincide. Hence a statistical 
description in terms of density operators will not  distinguish between corn- 
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pletely different situations. Nevertheless, one may expect that these states 
can be experimentally distinguished, since the states arising have different 
selection rules. 

Consequently, the solution of a density-operator equation like 

0 Dt = "t 05 - ~  [cr3, [cr3, DA] (1) 

cannot straightforwardly be interpreted as a measurement-type process, even 
if the outer-diagonal elements of D t vanish (with respect to a chosen basis) for 
large times t. Such density-operator dynamics can have completely different 
interpretations in terms of pure states (W~ichter, 1991). Hence here I will 
replace density operators by ensembles of  pure states, i.e., probability mea- 
sures on the space of pure states of the system under investigation (Amann, 
1994; Beltrametti and Bugajski, 1994; Misra, 1974). 

The term "ensemble" is only used here faute de mieux. It is not generally 
thought to be a Gibbs ensemble. In a Gibbs ensemble of molecules there 
are no interactions or Einstein-Podolsky-Rosen correlations between the 
molecules; furthermore, it is not allowed to select a molecule from the 
ensemble and investigate it individually; all molecules of a Gibbs ensemble 
have to be treated in exactly the same way. The "ensemble" of ammonia 
molecules used above, on the other hand, is nothing but a collection of 
(possibly finitely many) states, with appropriate "probabilities," Also, in the 
ensemble of ammonia molecules used above the "temperature" is infinite; 
in such an ensemble transitions cannot be observed due to saturation. Never- 
theless transitions can be observed when a single molecule of the ensemble 
is selected and investigated individually. If this single molecule is in the 
ground state, or has "temperature zero" and transitions to excited states can 
be observed. This whole discussion is, of course, heuristic, because certain 
assumptions concerning the behavior of individual molecules (~ la Einstein- 
Bohr) are used. Incidentally, the difference between two ensembles of pure 
states with the same associated density operator concerns the fluctuations 
(around the mean value of an observable). 

For the particularly simple spin-l/2 system, the state space is affinely 
isomorphic to the sphere in 3-space R 3. Under this affine isomorphism the 
pure states (rays in 2-dimensional Hilbert space) correspond to the points on 
the surface $2 of the sphere in 3-space. To any ensemble of pure states, i.e., 
to any probability measure ix on $2, there corresponds a unique density 
operator D~, describing the respective mixture 

Tr(O~.) = 3s(2 Tr(] X)(X]') d~(] X)(X]) (2) 
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where Tr(D~ o) denotes the trace of the density operator D~ multiplied with 
an arbitrary 2 X 2 matrix. Recall that the mixed state Tr(D~o) cannot be 
uniquely decomposed into pure states: There exist many different ensembles 
p, leading to the same mixed state. That was precisely the reason to replace 
density operators by ensembles of pure states! It is perhaps worthwhile to 
mention that the support of the ensemble p~ need not consist of orthogonal 
states: All sorts of mixtures are admitted. 

A single individual system is described by a pure state [i.e., a state with 
a maximal set of truth-definite observables (Raggio, 1981)]. Ensembles of 
pure states describe the respective statistics. The individual-stochastic inter- 
pretation o f  quantum mechanics refers to such an ensemble theory. This 
interpretation of quantum mechanics is adapted to situations where single 
individual systems are investigated. Statistics may come in when similarly 
prepared systems are investigated (such as alanine molecules). This statistics 
refers to the individual states and not to expectation values. The usual "statisti- 
cal interpretation" of quantum mechanics goes a step further by only admitting 
statistics of expectation values (instead of states). 

3. DERIVING STOCHASTIC DYNAMICS 

Let us consider the measurement of the 2 X 2 Pauli matrix cr 3. Starting 
from an arbitrary pure state c,~lo~) + c~113) (i.e., a point on the surface $2 of 
the sphere), one would like to get to a final state which is either spin up or 
spin down (i.e., either the north or the south pole of the sphere). Figure 1 
offers a visualization of that process. 

final state z 
"spin up" i 

~ J \  i 

mmal state XJ",\\ 

final state 
"spin down" 

Fig. 1. The "quantum jump" during the mea- 
surement process is replaced by a stochastic 
dynamics leading to final states which are 
either spin up or spin down. This figure is not 
based on a simulation. 
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One might perhaps expect that the stochastic dynamics used would give 
rise to the final ensemble 

, 2 2 
[.Lf I cc~ I ~northpole -t- I C[5 = ] ~southpole (3) 

that is, would reproduce the "correct" transition probabilities. Nicely enough, 
there is a stochastic dynamics leading to this final ensemble. It is the following 
Piron-Gisin process (Gisin, 1984, 1989; Pearle, 1976) governed by the Strato- 
novich differential equation 

dO(t) = -sin{O(t)} cos{O(t)} dt + sin{O(t)} o dw(t) (4) 

where spherical coordinates have been used [0 -< 0 --- ~r; the azimuthal angle 
has been omitted; w(t) is the Wiener process]. 

If one wants to "derive" this or other similar processes, one must be 
careful not to expect too much. A derivation usually starts from a larger 
system, incorporating the spin's environment (or measuring apparatus). One 
might, for example, think of a two-level molecule coupled to the quantum 
radiation field with an additional experimental input (e.g., proportional to a 
sin cot function). The dynamics of the joint system {molecule & field] will 
change an initial product state 

(col~) + c~II3>) | 

(where �9 is the initial state of the field) into an entangled state 

Hence the molecule and the field are holistically correlated and no longer 
exist as individual systems (since the restriction of a pure nonproduct state 
to a subsystem is no longer a pure state). The hard problem with the quantum 
measurement process is indeed to show that one can get a product state back 
after an appropriate period of time or to show that a suitable dressing (i.e., 
a new tensorization) allows product states to survive (approximately) during 
time evolution. Perhaps it might also be possible to derive classical observ- 
ables of the field [in the sense of Amann (1991)] and show that these classical 
observables imply a factorization of the states considered. At present only 
partial results are available (Gea-Banacloche, 1990, 1991). Let me stress again 
that a full quantum mechanical description of the joint system {molecule & 
environment} would, of course, never lead to a stochastic time evolution on 
the pure states of the two-level molecule (apart from rather trivial cases)! 
Therefore any stochastic time evolution of the two-level system's pure states 
is based on a factorization, which is imposed by hand! Hence, whatever 
complicated mathematical techniques (algebraic quantum mechanics, quan- 
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tum stochastic calculus, etc.) are used to get to a stochastic evolution equa- 
t i on -neve r  trust that this factorization problem has been solved! 

Presently it is therefore the best and most honest strategy to assume 
from the very beginning that only product states are admitted! Even with 
this Hartree approximation (which is used for the theory of spectroscopy 
without thinking about it) one can get a better understanding of the measure- 
ment process. And even with this Hartree approximation it is still difficult 
enough to understand it. 

Hence the strategy is clear (Primas, 1990a-c; Zaoral, 1991): Starting 
with a Hamiltonian for the joint system { system to be measured & environ- 
ment}, one writes down the corresponding Heisenberg differential equations, 
integrates them (the Hartree approximation being of enormous help), and 
replaces the quantum environment by a classical one (think of a high-tempera- 
ture limit, and take the symmetrized quantum correlation function over to 
the classical environment). This procedure gives rise to a stochastic dynamics 
on the pure state space of the system to be measured (the two-level system 
in our discussion). The stochastic character of the dynamics can be traced 
back to the fact that the initial pure state of the environment (having infinitely 
many degrees of freedom) cannot be experimentally determined. Hence only 
an appropriate guess is available, usually a Gibbs distribution with a certain 
temperature T. 

4. RESULTS A N D  P R O B L E M S  

What are the results of this strategy? Well: Rather complicated stochastic 
diffusion equations (Primas, 1990a-c; Zaoral, 1991), which are not easily 
accessible to discussion. There are, in particular, some remarks to be made: 

�9 There is absolutely no guarantee that the density operator evolution 
associated to such a stochastic diffusion equation via equation (2) 
fulfills a "closed" equation of the type 

Dt = f(Ot) 

as, for example, given in equation (1). 

�9 Since we are dealing with nonlinear dynamical processes on the pure 
state space, there is no guarantee that the dynamics on the pure state 
space can be extended to all mixed states. But it can, of course, be 
extended to ensembles of pure states in the sense of Section 2. 

�9 Starting from a given initial state c,~r~) + c~113), one cannot hope 
that the transition probabilities to get to spin-up or spin-down states 
are precisely Ic~l 2 and Ic~l 2, respectively. Consider, for example, the 
stochastic diffusion equations of the Piron-Gisin type 
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da~(t) = --2K sin{~(t)} cos{O(t)}dt + 2tx sin{a~(t)} o dw(t) (5) 

with K and tx being positive constants. As long as c~ "= --�89 2 takes the 
same value oL = - 1  as in the original Piron-Gisin process (with K = Ix = 
1/2), one gets the same transition probabilities, namely �89 ___ cosO). For 
other values of the parameter c~ the transition probabilities change. With 
= - 2 ,  for example, the transition probabilities (for getting near the poles) 
are �88 _+ 3cosa~ 7 cos3a3), differing from the "correct" values by less than 
0.1. For other values of o~ (in particular, for I od small), the transition probabili- 
ties can differ from the correct values considerably (soon the difference is 
50% of the correct value). 

These problems are perhaps inconvenient, but there is no physical reason 
to expect simpler structures (such as semigroups on the density operator 
level). Nevertheless there are other points which lead us beyond inconve- 
niences, perhaps even into trouble: Consider again the dynamics specified 
by equation (5). This stochastic dynamics can be "derived" by the strategy 
sketched at the end of Section 3 (at least if some uncontrollable "approxima- 
tions" are used: it is not meant to describe the measurement process). The 
tricky point is that the constant Ix depends on the temperature of the original 
Gibbs distribution (of the environment's pure states; see end of the last 
section). In order to get a process exhibiting the correct transition probabilities 
(i.e., a = - 1), it would be necessary to adjust the temperature of the Gibbs 
distribution. That is certainly not what one would like to have. 

There is an even more disturbing problem concerning the asymptotic 
behavior of derived stochastic diffusion equations. Let me formulate two 
arguments: 

Argument I. The original probability distribution of the environment's 
pure states is assumed to be thermal, i.e., a Gibbs distribution with a certain 
temperature T. Hence also the final ensemble Ixe of the spin system's pure 
states is thermal and depends in particular on the temperature T of the field. 
Since a "small system" admits only one Gibbs distribution for a given 
temperature (symmetry breaking does not arise), the final ensemble Ixf = Ixr 
does not depend on the initial state c~lot) + %113). Therefore the asymptotic 
behavior of the respective derived stochastic dynamics does not reproduce 
the correct transition probabilities (in mathematical terminology such a behav- 
ior is called ergodic). 

Argument 2. Consider a stochastic differential equation for the "system 
to be measured" which is derived from a dynamics for the joint system 
including the quantum environment (measurement apparatus). Then the coef- 
ficients of this stochastic differential equation cannot be easily controlled 
(apart from the actual input function, e.g., a sin-function, of the experimenter). 
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Consequently, (nonergodic) measurement-type behavior cannot be enforced 
by simple manipulation of parameters, and the "system to be measured" will 
have a tendency to behave in a thermal (ergodic) way. A typical example is 
given by the coupling to the quantum radiation field with terms [/5 _ q~]2/ 
2m, where 3, is the transverse vector potential of the field. All the coupling 
constants of a derived spin-�89 model (Pfeifer, 1980) are fixed, and 
hence the parameters in a derived stochastic differential equation cannot be 
tuned in an ad hoc way. Though these matters are delicate, the derived 
stochastic diffusion equation has a good chance to be ergodic. 

How can the thermal and the measurement-process points of view be 
reconciled? Well, quite obviously, it is not necessary to have an asymptotic 
measurement-type behavior. It would be absolutely sufficient to have mea- 
surement-type behavior only during an intermediate period of time, such as 
between some nanoseconds and some days. Then the asymptotic behavior 
could still be thermal for large times. Seen from the Einstein-Bohr point of 
view, the spectroscopist induces transitions between different energy levels 
of the molecule (e.g., by giving a sin oJt input), and hence forces the molecule 
to forget about its original state. Similarly, the spontaneous transitions between 
different molecular energy levels show that one should not expect asymptotic 
measurement-type behavior: eigenstates of the molecular Hamiltonian (which 
are the final states in an energy measurement) have a limited lifetime, and 
hence also our stochastic dynamics should show a similar feature; i.e., if a 
given initial state travels to one of the eigenstates (regions around north and 
south poles in our example), there should always be a chance to leave such 
a region and travel to another eigenstate. It is rather plausible that the dynamics 
loses its memory during such a process (as in an ergodic situation), that is, 
a path that changed various times between different eigenstates will not 
remember its initial position. Incidentally, the example of spontaneous transi- 
tions also teaches us that the typical duration of stay in regions near the 
poles can also be rather short (recall Einstein's formula for spontaneous 
transition probabilities). 

Let me conclude with two remarks: 
Thermal and ergodic behavior were more or less identified in the above 

reasoning. Quite a few people would not be satisfied with that, asking at 
least for detailed balance in thermal equilibrium (as used, for example, by 
Einstein in the derivation of his formula for spontaneous transition probabili- 
ties). With this additional assumption one also gets increasing relative 
entropies 

- f  ft log ft dl.l,f 
JS2 
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with respect to the final ensemble p,f (here f, is the Radon-Nikodym derivative 
of the ensemble at time t with respect to P~0. It would be an interesting 
problem to investigate under what circumstances stochastic differential equa- 
tions fulfilling this condition could be derived. 

Arguing with spectroscopic examples, an "Einstein-Bohr point of view" 
was used, where (approximate) eigenstates of the Hamiltonian play an 
important role. I would like to understand its relation to the "yon Neumann 
point of view," where eigenstates of the coupling operator (coupling the 
system to be measured to the measurement apparatus) are more important. 
It would be nice to have examples of different stochastic dynamics (on the 
pure state level) corresponding to these views, nevertheless leading to the 
same dynamics on the density operator level. 
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